دانلود پایان نامه

دارند.ساختاری که در آن گروه نیترو در موقعیت مجاور به سیستم الکترون دهنده (نیتروژن پیریدین) قرار گیرد قدرت پایه ای آن ضعیف می شود. {6}

شکل 11.1. قرار گرفتن گروه نیترو در موقعیت های مختلف و تاثیر بر قدرت پایه ای{6}
1-5-2- خاصیت شبه اسیدی27
علاوه بر ماهیت پایداری، ایمیدازول خواص اسیدی ضعیف (شبه اسیدی) از خود نشان می دهد. فرم آن نمک با فلز است که ساختار کلی آن در زیر نشان داده شده است.

شکل 12.1. ساختار کلی نمک ایمیدازول با فلزات{6}
? مهمترین نمک درمیان نمکها، نمک نقره کم محلول است، که زمانی که ایمیدازول در تماس با نقره آمونیاکی محلول قرار می گیرد رسوب می کند. در حضور آمونیاک، نمکهای نامحلول کبالت و روی نیز بدست می آید.
واکنش ایمیدازول با معرف Grignard منجر به تشکیل هالید منیزیم ایمیدازول می شود.
ماهیت شبه اسیدی ایمیدازول بستگی به وجود یک گروه آمین غیر جانشین و ایمیدازول و ایمیدازول ها این ساختار مورد نظر از نمک نقره کم محلول در حضور محلول نقره آمونیاک تشکیل می شود. بسیاری از ایمیدازول ها برای نمک های نامحلول با یون مس در حضور آمونیاک هستند. ایمیدازول محلول در آمونیاک مایع، تشکیل یک محلول روشن می کند که احیاء با تبخیر حلال انجام می شود. با افزودن آمید های فلزی به چنین محلولهایی باعث تشکیل نمک می شوند. نمکهای سدیم، پتاسیم، کلسیم و منیزیم با این روش بدست می آیند. این نمکها در حضور آب ناپایدار هستند و تجزیه شده و به ایمیدازول و هیدروکسیدهای فلزی تبدیل می شوند. مقایسه رسانایی محلول آمونیاک مایع از ایمیدازول و پیرول نشان می دهد که ترکیبات سابق اسید قوی تری هستند. استخلافهای الکترونگاتیوی خاصیت اسیدی ایمیدازول را بوسیله کاهش چگالی الکترون در اطراف نیتروژن پیرول افزایش می دهد. لوفین اسید قویتری نسبت به ایمیدازول است.به مانند ایمیدازول نمک لوفین از آمیدهای فلزی یا فلزات با محلول آمونیاک مایع تهیه می شود. {6}
1-5-3- پایداری شیمیایی و خاصیت آروماتیکی28
? پایداری شیمیایی ایمیدازولها عالی است و آنها در مقابل اسید و باز مقاوم هستند. در عمل مواجهه ایمیدازول با هیدروژن یدید در دماهای بالاتر از 300 درجه سانتیگراد تاثیر کمی دارد و حلقه ایمیدازول به میزان قابل توجهی در برابر هیدروژناسیون مقاوم است. تعدادی از بنزی ایمیدازول ها از جمله 2متیل، 2اتیل، و 1و2 دی متیل بنزی ایمیدازول در حضور کاتالیزور آدامز و اسید استیک منجمد، تحت عمل هیدروژناسیون قرار گرفته و در بخش بنزن مشتقات مطابق با تترا هیدرو مربوطه را تشکیل می دهند و بخش ایمیدازول بی تاثیر باقی می ماند. که در شکل زیر نشان داده شده است.

شکل 13.1. هیدروژناسیون حلقه بنزن{6}

Lophine تحت هیدروژناسیون کاتالیزوری با کاتالیزور Willstatter Platinum در استیک اسید منجمد قرار گرفته و به 2و4و5 تری سیکلو هگزیل 2 ایمیدازول تبدیل می شود.
ایمیدازول نسبت به تری اکسید کروم پایدار تر است، اما به راحتی توسط پرمنگنات پتاسیم و هیدروژن بروکسید مورد حمله قرار می گیرد و اکسامید تشکیل می شود. بنزوئیل پراکسید در محلول کلروفرم هم به راحتی به ایمیدازول حمله میکند و تشکیل اوره با آمونیاک می کند. {6}

فصل دوم

مروری بر متون گذشته

2-1- شیمی محاسباتی
شیمی محاسباتی به زبان ساده کاربرد مهارتهای شیمیایی، ریاضی و محاسباتی در جهت حل مسائل شیمیایی است.در این حوزه از کامپیوتر برای تولید اطلاعاتی نظیر ویژگی‌های ملکولها یا نتایج تجربی شبیهسازی شده استفاده میشود. {7}
شیمی محاسباتی به روشی دقیق برای پژوهش و مطالعه پیرامون موادی تبدیل شده است که بسیار کمیاب و یا گران قیمت هستند. همچنین به شیمی دانان کمک میکند که قبل از شروع آزمایشات علمی در آزمایشگاه بتوانند پیشبینیهایی را راجع به مواد مختلف انجام دهند بنابراین آنها می- توانند مشاهدات بهتری داشته باشند.
معادله شرودینگر مبنایی است که بیشتر شیمیدانان محاسباتی از آن استفاده میکنند؛ زیرا این معادله اتمها و ملکولها را به صورت مدل ارائه میدهد و به کاربر اجازه میدهد موارد زیر را محاسبه نماید. {8}

تعیین ساختار الکترونی برای اتمهای هر مولکول
بهینه سازی هندسی مدلهای مولکولی
محاسبات مربوط به فرکانس ارتعاشات اتمها
حالتهای گذار مولکولها در واکنشهای مختلف
محاسبات مربوط به ساختار پروتئین‌ها
توزیع ابر الکترون و بار الکتریکی برای هر مولکول
انرژی پتانسیل سطحی(PES) هر اتم
ثابت سرعت برای واکنشهای شیمیایی (کینتیک واکنشها)
محاسبات ترمودینایکی گرمای واکنشها (انرژی فعالسازی)

2-2- روش های محاسباتی
روشهای محاسباتی به دو دسته کلی تقسیم میشوند که عبارتند از:
روشهای محاسباتی بر اساس مکانیک مولکولی
روشهای محاسباتی بر اساس مکانیک کوانتومی?
روشهای محاسباتی بر اساس مکانیک کوانتومی نیز خود به دو روش تقسیم میشوند که عبارتند از:
روشهای آغازین29
روشهای نیمه تجربی30
در حال حاضر عموما سه روش نظری محاسبات (شامل محاسبات مکانیک ملکولی، محاسبات نیمهتجربی و محاسبات کوانتومی آغازین) برای مطالعه خواص ملکولها به کار میرود. روشهای نیمه تجربی موقعیتی بین روشهای مکانیک ملکولی و آغازین دارند. دقت روشهای سطح بالای آغازین برای محاسبه گرمای تشکیل با روشهای تجربی قابل مقایسه است و دست کم ساختار هندسی مولکولها را با دقت موجود در روشهای ت
جربی محاسبه میکند. این محاسبات به اندازه کافی جامع هستند به طوری که میتوان ویژگیهای حالتهای گذار و حالتهای برانگیخته را با آنها مطالعه کرد. در روشهای نیمه تجربی مانند روشهای مکانیک مولکولی از پارامترهای تجربی استفاده میشود ولی از طرفی هم مانند روشهای آغازین اساس مکانیک کوانتومی دارند. تنها تفاوت اساسی بین روشهای نیمه تجربی و آغازین استفاده گسترده از تقریبها در محاسبات نیمه تجربی است.
?این موضوع با اینکه روشهای نیمه تجربی را از محاسبه تعداد زیادی عبارتهای مورد استفاده در آغازین باز میدارد، در عین حال با استفاده از اطلاعات تجربی پارامترهای لازم را برای استفاده در تقریبها مشخص میکند به طوری که دقت لازم در محاسبات حفظ میشود. در ادامه توضیحات لازم راجع به این سه روش بیان میشود.{9}
2-2-1- روش های محاسباتی آغازین
در روشهای محاسباتی آغازین برای سیستمها، عملگر هاملیتونی31 صحیح را به کار میبرند و سعی میشود با استفاده از ثابتهای فیزیکی بنیادی و بدون استفاده از دادههای تجربی معادلات را به دست آورند. روشهای آغازین از تقریب بورن- اپنهایمر32 و حل دقیق معادله شرودینگر بهره میگیرد. این روشها تمامأ بصورت کوانتومی بوده و صحت محاسبات در آنها بسیار بالاست. روشهای آغازین خود شامل روشهای میدان خودسازگاری هارتری- فاک و نظریه اختلال مولر- پلست میباشد که در ادامه بحث خواهد شد. {10}

مطلب مشابه :  پایان نامه ارشد با موضوعشهرستان رودبار، بخش خورگام، شهرستان رشت، استان زنجان

2-2-1-1- روش میدان خودسازگار هارتری- فاک33
پایینترین سطح و متداولترین محاسبات به روش آغازین، محاسبات هارتری- فاک میباشد. این روش، اولین روش محاسباتی در روشهای محاسباتی آغازین است. اساس روش هارتری- فاک بر اساس نظریهی اوربیتال مولکولی است. بهترین تابع موجی که الکترونها را به اوربیتالها اختصاص میدهد، تابع موج هارتری- فاک است. هر اوربیتال مولکولی هارتری- فاک به صورت یک ترکیب خطی از مجموعهای از توابع پایه نوشته میشود. اگر توابع پایه به تعداد کافی در نظر گرفته شوند، آنگاه میتوان اوربیتالهای مولکولی را که به اندازه ناچیزی با اوربیتالهای مولکولی واقعی هارتری- فاک تفاوت دارند، به دست آورد.
در این روش همچنین از تقریب بورن- اپنهایمر استفاده میشود. این تقریب امکان جدا فرض کردن حرکات الکترونی و هسته را مورد بحث قرار می-دهد. هستهها بخاطر جرم زیادشان نسبت به الکترونها ثابت فرض میشوند. در نتیجه میتوان از انرژی جنبشی هستهها صرف نظر کرد. از آنجا که جرم هسته هزاران برابر جرم الکترون است، این تقریب قابل توجیه است. {11}

2-2-1-2- نظریه اختلال مولر- پلست34
نظریهی اختلال براساس دانستن جواب یک مسئله و استفاده از آن در حل مسائل وابسته به آن است. فرض کنید حل معادله شرودینگر برای یک سیستم را به طور کامل میدانیم در این صورت میتوان معادله شرودینگر را برای سیستم دیگری که نسبتأ به سیستم اول نزدیک است، نیز حل کرد. به این ترتیب که اختلال بین اپراتورهای هامیلتونی دو سیستم را به عنوان اختلال کوچک در حل سیستم اول در نظر میگیریم. میتوان معادله دوم را با بسط حل معادله اول و نیز عامل اختلال حل کرد.
? این روش در ابتدا برای حل تابع موج یک اتم در یک میدان الکتریکی کوچک استفاده شد که جمله میدان الکتریکی کوچک ایجاد شده در عملگر هامیلتونی به عنوان عامل اغتشاش فرض شد. یک کاربرد موفق از این نظریه برای مولکولها، به مولر و پلست در سال 1933 میلادی میرسد، که امروزه تحت روشهای MPn شناخته میشوند. {12}

2-2-1-3- ?روش های نیمه تجربی
روشهای نیمه تجربی یک عملگر هامیلتونی سادهتر از هامیلتون واقعی را برای محاسبات به کار میبرد و از دادههای تجربی برای اختصاص دادن مقادیر به برخی از انتگرال‌هایی که در محاسبه حاصل میشوند استفاده کرده و از برخی انتگرالها صرف نظر میکنند. علت استفاده از روشهای نیمه تجربی آن است که درحال حاضر محاسبات دقیق بر روی مولکولهای نسبتا بزرگ امکانپذیر نیست. روشهای PM3، MNDO، INDO و CNDO در دسته روشهای نیمه تجربی قرار دارند. {13}
2-2-1-4- روش محاسباتی مکانیک مولکولی35
این روش توسط وایبرگ، آینجر و هندیکسون گسترش یافت. روش مکانیک مولکولی برای حالتهای پایهی مولکولها طرحریزی شده است. مولکولها به علت کوچک بودنشان، تحت قوانین مکانیک کوانتومی توصیف میشوند. اما تحت شرایط (برحسب نیاز به محاسبات سریعتر) بهتر است از مکانیک کلاسیک استفاده کنیم. فرآیند محاسبات مکانیک مولکولی را روش میدان- نیرو نیز مینامند.
در شبیهسازیهای مکانیک مولکولی، از قوانین فیزیک کلاسیک برای پیشگویی ساختار و خواص مولکولها استفاده میکنند. طبقهبندی روشهای مکانیک مولکولی، بر اساس نوع میدان- نیرویی است که به کار میبرند. در روشهای میدان مولکولی، الکترونهای سیستم در نظر گرفته نمیشوند و محاسبات بر اساس برهمکنشهای بین هستهای انجام میشود. به همین علت نتایجی که به دست میآید بر اساس مفاهیم شیمی به سادگی قابل تفسیر نیستند و نمیتوان با این روشها خواص شیمیایی یک مولکول، را که به علت نقش مستقیم الکترونها رخ میدهد، بررسی کرد. اما مزیت اصلی روشهای میدان- نیرو، بالا بودن سرعت محاسبات است که امکان مطالعه سیستمهای بزرگ را به ما میدهد این امر میتواند در بهینهسازی و مطالعهی ساختار ماکرومولکولهای زیستی مانند پروتئینها بکار رود. همچنین این روشها تنها برای سیستمهایی بکار میروند که اطلاعات قبلی زیادی از
آنها موجود باشد. از جمله عناصر بکار رفته در این روش می توان به روش هایMMp1,MMx,MM1
و MM2 اشاره کرد. {14}


2-3- نظریه تابعی چگالی36
نظریه تابعی چگالی (DFT) یک روش محاسباتی مکانیک کوانتومی است که در فیزیک و شیمی به منظور بررسی ساختار الکترونی حالت پایه در سیستمهای چندگانه به ویژه اتمها، مولکولها و فازهای چگال استفاده میشود. این نظریه، ویژگیهای سیستمهای چند الکترونی را به وسیله تابعیهای خاصی بیان میکند که در این مورد به چگالی الکترون بستگی دارد. به همین دلیل نام نظریه تابعی چگالی به استفاده از تابعیهای مربوط به چگالی الکترون بر میگردد.
DFT در زمره پرکاربردترین روشهای موجود در فیزیک حالت جامد و فیزیک محاسباتی قرار دارد. استفاده از یک سری تقریب ها در این نظریه موجب افزیش دقت این روش در محاسبه برهمکنشهای تعویضی- همبستگی37 شده است. در بسیاری از موارد نتایج حاصل از محاسبات DFT با نتایج تجربی همخوانی کاملی
دارد. این محاسبات در مقایسه با روشهای سنتی مثل هارتری- فاک بسیار مقرون به صرفهتر هستند. این روش هم به روش محاسباتی آغازین و هم به روش محاسباتی نیمه تجربی نزدیک است، زیرا در آن معادله شرودینگر به طور تضمینی حل میشود و از طرف دیگر، دادههای تجربی در آن بررسی میشوند. محاسبات نظریه تابعی چگالی تا حدود 500 اتم را می تواند بررسی کند.
1?هر چند قاعده هوهنبرگ-کوهن38 (شکل اولیه نظریه تابعی چگالی) تنها برای حالت های پایه در غیاب میدان مغناطیسی به کار رفت، اما به منظور مطالعه سیستمهای دیگری هم عمومیت یافته است. قاعده هوهنبرگ- کوهن ابتدایی ثابت کرد که ویژگیهای حالت پایه یک سیستم چندین الکترونی را میتوان تنها با یک چگالی الکترونی که در سه بُعد جهتگیری کرده است مشخص کرد. در این صورت با استفاده از تابعیهای چگالی الکترون، مشکلات سیستمهایی با تعداد N الکترون و 3N جهتگیری فضایی کاهش یافته و در مجموع به 3 جهتگیری تقلیل مییابد. قاعده هوهنبرگ- کوهن ثانوی یک تابعی انرژی برای سیستم تعریف کرد و ثابت کرد که چگالی الکترونی صحیح حالت پایهی این تابعی، انرژی را به پایینترین سطح کاهش میدهد.

مطلب مشابه :  پایان نامه ارشد درموردزرده، نتایج، سیر، تیمارهای

اساس نظریه تابعی چگالی تعیین کامل انرژی الکترونی حالتهای پایه39 با استفاده از چگالی الکترونی میباشد که توسط کوهن و هوهنبرگ در سال 1964 اثبات شده است. در واقع یک تناظر یک به یک بین چگالی الکترونی یک سیستم و انرژی آن سیستم وجود دارد. آنها نشان دادند که انرژی مولکولی حالت پایهی تابع موج و همه خواص الکترونی و مولکولی دیگر را میتوان با استفاده از چگالی احتمالی الکترون که فقط تابعی از سه متغیر است p(X,Y,Z)، تعیین کرد. مفهوم این موضوع از طریق مقایسه تابع موج با چگالی الکترون بهتر قابل درک است.
بر خلاف پیشرفت های اخیر، هنوز هم مشکلاتی در استفاده از DFT در توصیف مناسب برهمکنشهای بین مولکولی به ویژه نیروهای واندروالس، حالتهای برانگیخته، حالتهای گذار، پتانسیل انرژی سطحی و سایر سیستمهای مربوطه و همچنین در محاسبه سد انرژی نیمه رساناها وجود دارد. پیدایش و توسعه روشهای جدید DFT به منظور چیره شدن بر این مشکلها بوده است. در این روشها در تابعیهای مورد استفاده تغییراتی به وجود آمده است و یا این که عبارتهایی به آنها اضافه گردیده است.?
اگر چه اثبات شده که هر چگالی مختلف، انرژی حالت پایهی مختلفی را میدهد ولی تنها مشکل این است که رابطه تابعی بین کمیتها شناخته شده نیست. هدف روشهای DFT طراحی رابطه تابعی بین انرژی و چگالی الکترونی میباشد. از جمله روشهای مورد استفاد در محاسبات به روش نظریه تابعی چگالی میتوان بهPW91, PBE, MPW1, PW91, B3LYP, B3PW91 اشاره


دیدگاهتان را بنویسید